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Affine Structural Models of Corporate Bond Pricing

Abstract

In existing structural models of corporate bond pricing, the underlying asset return volatility is

assumed to be constant, the jump component in the return process follows a compound Poisson,

and the interest rate is described by a one-factor model. In this paper, we consider an affine class

of structural models that can allow for stochastic asset return volatility, a high frequency jump

component in the return process, and a multi-factor term structure model. We provide analytical

results for both the price of corporate bonds and the real probability of default for this class of

models under certain assumptions on the recovery rate and default boundary.



Affine Structural Models of Corporate Bond Pricing

Assessing and managing credit risk of corporate bonds has been a major area of interest and concern to

academics, practitioners, and regulators. One widely used approach to the valuation of corporate bonds

is the so-called structural approach based on Black and Scholes (1973) and Merton (1974).1 Recently

there have been a number of empirical studies of structural models using bond data. For instance, Jones

and Rosenfeld (1984), Lyden and Saraniti (2000), Delianedis and Geske (2001), Ericsson and Reneby

(2001) and Eom, Helwege, and Huang (2004) examine the implications of the models on pricing using

individual corporate bond prices; Schaefer and Strebulaev (2004) on hedging; KMV (e.g. Kealhofer

and Kurbat (2001) and Leland (2002) on the actual default probability; and Huang and Huang (2002)

on both pricing and the actual default probability. Whereas the structural approach has been found quite

useful, the empirical evidence has also indicates that standard structural models still have difficulty in

accurately predicting spreads or explaining spreads and default rates simultaneously.

The main assumptions made in existing structural models include that the firm’s asset return volatil-

ity is constant; that the (default-free) interest rate is either constant or follows a one-factor model; and

that the jump component in the asset return process is modelled by a compound Poisson process. In

this paper, we extend the existing models by relaxing these three assumptions. More specifically, we

consider an affine class of structural models of corporate bond pricing, in which the underlying asset

volatility can be stochastic, the underlying asset return can include a high-frequency jump component,

and the interest rate process can be driven by multi factors. Under certain assumptions on the recovery

rate and default boundary, analytical results are available for both corporate bond prices and real default

probabilities under this class of models.

The paper is organized as follows. Section 1 considers an affine class of structural models of cor-

porate bond pricing. Section 2 discusses the implementation of models and reports numerical results.

Section 2 concludes.

1Another popular approach, which is not the focus of this study, is the reduced-form approach of Jarrow and Turnbull
(1995) and Duffie and Singleton (1999). See also Das and Tufano (1996), Duffie, Schroder, and Skiadas (1996), Jarrow
(2001), Robert Jarrow and Turnbull (1997) and Madan and Unal (1998).
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1 Models of Corporate Bond Pricing

In this section, we consider an affine class of corporate bond pricing models that can allow for both

stochastic volatility and jumps, and for a multi-factor term structure specification as well.

To fix the notation, letr be the interest rate process andV be the firm’s asset value process. Denote

by Q the risk-neutral probability measure. The underlying structure of the models considered in our

analysis is as follows:

d lnVt = [rt −δ−σv(t)2/2−µk(rt , lnVt)]dt+σv(t)dWv
t +dJt −ξdt, (1)

dv(t) = κ(1−v(t))dt+σv

√
v(t)dZt , (2)

rt = y1t +y2t +y3t (3)

wherev(t) = σv(t)2, the functionµk—affine in bothr andlnX—is non-zero only whenV∗
t is stochas-

tic, andZt denotes a standard Brownian motion underQ, which can be correlated with the standard

Brownian motionWv
t in the asset return process byρ. ProcessJ is a Lévy jump process and parameter

ξ is such that the compensatedJ is a Q-Martingale. Note that the long-run mean of the activity rate is

normalized to unity in equation (2) for identification purpose. The state variablesyi , i = 1, . . . ,3, that

determine the interest rate are assumed to have an affine structure and will be specified later.

1.1 Zero-Coupon Bonds

Consider first the case where default can occur only at maturityT. LetV∗ be the default boundary.

Assumption 1 (i) Default occurs ifVT < V∗
T ; (ii) In the event of default, the absolute priority rule is

followed and there is no bankruptcy cost.

Under this assumption, we are in the Merton world. The value of the zero-coupon bond can be

obtained from the equity value of the firm, which itself is equal to the price of an European call option

written on the firm’s asset value. Below we consider two special cases.
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1.2 The Compound Poisson Jump

The jump componentJ is assumed to follow a compound Poisson process. Both the interest rate and

asset return volatility can be stochastic. The value of equity holders can be obtained using results from

Duffie, Pan, and Singleton (2000). As shown in DPS, this affine class of jump-diffusion with stochastic

volatility models include the models considered in Heston (1993), Bakshi, Cao, and Chen (1997), Bates

(2000), and Bakshi and Madan (2000) as special cases.

1.3 High-Frequency Jump

The jump componentJ is assumed to follow a general Levý jump process. The interest rate is assumed

to be non-stochastic but asset return volatility can be stochastic. Results can be obtained from Carr and

Wu (2002).

In particular, we consider two different jump specifications: the variance gamma and log-stable

specifications (c.f. the appendix for more details on these jump models).

The solution to the Fourier transformation of the log asset return is given as follows (c.f. Carr and

Wu (2002) or Huang and Wu (2004)). We have

φv(u) = EQ
[
eiuvt

]
= exp−B(t)ν0−A(t)), (4)

where where

B(t) =
2ψ(1−e−ηt)

2η− (η−κ∗)(1−e−ηt)
; (5)

A(t) =
κ
σ2

v

[
2ln

(
1− η−κ∗

2η
(
1−e−ηt)

)
+(η−κ∗)t

]
, (6)

with

η =
√

(κ∗)2 +2σ2
vψ, κ∗ = κ− iuρσσv.
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An inverse Fourier transform can then be used to obtain the equity value. In practice, this inversion

can be done more efficiently using the FFT (see Carr and Madan (1999)).

1.3.1 The Longstaff-Schwartzed model with a multi-factor structure

Assume that under the risk-neutral measure

d lnVt = (rt −δ−σ2
v/2)dt+σvdWt (7)

r = y1 +y2 +y3 (8)

dyit = (αi−βiyit ) dt+σidZit , i = 1, . . . ,3 (9)

whereZi , i = 1, . . . ,3 are independent of each other andcov[dZit ,dWt ] = ρvidt. If y2t andy3t zero, we

recover the Longstaff-Schwartz model.

The default probability under the forward measureQT in this multi-factor model can be calculated

similar to the one-factor term structure models. See appendix for more details.

1.4 Coupon Bonds

Consider ann-period defaultable bond with unit face value. The bond pays fixed-rate coupons and

matures atT. Let c be the coupon rate. We consider two assumptions on the recovery rate of the bond

in the event of default. (A1) The bond recovery is equal tow < 1 (times the face value) and to be

received on the first scheduled coupon date after default (discrete-time recovery in the sense of Duffie

(1998)). (A2) The bond recovery is equal to aw fraction of an otherwise identical Treasury bond (the

Jarrow and Turnbull’s (1995) model of recovery of treasury).
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Consider the recovery assumption made in (A1) first. LetPRF(0,T) denote the time-0 value of the

bond with discrete-time recovery. We have

PRF(0,T) = c/2
n

∑
i=1

D(0,Ti)(1−Qi(0,Ti))+D(0,Tn)(1−Qn(0,Tn))

+ w
n

∑
i=1

D(0,Ti)
[
Qi(0,Ti)−Qi−1(0,Ti−1)

]
(10)

whereQi(0,Ti) represents the time-0 unconditional default probability by timeTi under theTi-forward

measure,D(0,Ti) denotes the time-0 value of aTi-maturity default-free zero-coupon bond, andTn = T.

On the RHS of (10), the first two terms represent the payoff conditional on no default, whereas the last

term comes from the bond recovery in the event of default.

Consider next the recovery assumption made in (A2). LetPRT(0,T) denote the time-0 value of the

bond with a recovery of treasury. We have

PRT(0,T) =
(c

2

) n

∑
i=1

D(0,Ti)[1−w`Q
i(0,Ti)]+

(
1+

c
2

)
D(0,T)[1−w`Q

n(0,T)] (11)

wherew` is the loss rate. In this approach, each coupon is treated independently and the price of a

coupon bond is simply the sum of prices of the independent zeroes. This “portfolio of zeros” approach

is used in Longstaff and Schwartz (1995) and Collin-Dufresne and Goldstein (2001). The advantage of

this approach is that it allows for correlation between the default process and the interest rate.

Pricing formulas given in Eqs. (10) and (11) are fairly general as no assumption about the under-

lying state processes has yet been made. One can see from the two equations that once probabilities of

survival (or default) are known, the price of a defaultable bond is straightforward to calculate. To obtain

the default probabilities, however, we need to specify the dynamics of the underlying state variables.

Below we consider two specifications.
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1.5 Asset Return with Constant Volatility

Let V be the firm asset value process andX be a new process(Vt/V∗
t )t≥0. Assume that under the

risk-neutral measure,

d lnXt = [rt −δ−σ2
v/2−µk(rt , lnXt)]dt+σvdWv

t +d

[
Nt

∑
i=1

Zi

]
−λξdt, (12)

drt = κr(θ− rt) dt+σrdWr
t (13)

where the functionµk—affine in bothr andlnX—is non-zero only whenV∗
t is stochastic,Wv andWr

are one-dimensional standard Brownian motions and have a correlation coefficient ofρ. Parametersκr ,

θ, andσr are the speed of mean-reverting, the long-term mean, and the volatility of the interest rate,

respectively.

Let’s consider several special cases of the specification given in Eqs. (12) and (13).

1.5.1 The Extended Merton Model

This model is first considered in Eom, Helwege, and Huang (2004). In this model, a coupon bond

is treated as if it were a portfolio of zero-coupon bonds, each of which can be priced using the zero-

coupon version of the model. The default boundaryV∗
t = K∀t ∈ {Ti} and default is triggered if the

asset value is belowK on coupon dates. However, unlike the Merton model, the interest rate here can

be stochastic.

The price of a coupon bond can be written as follows

PM(0,T) =
2T−1

∑
i=1

D(0,Ti)EQ
[
(c/2)I{VTi≥K}+min(wc/2,VTi ) I{VTi <K}

]

+D(0,T)EQ
[
(1+c/2) I{VT≥K}+min

(
w(1+c/2),VT

)
I{VT<K}

]
(14)

whereD(0,Ti) denotes the time-0 value of a default-free zero-coupon bond maturing atTi , I{·} is the

indicator function,EQ[·] is the expectation at time-0 under theQmeasure, andw is the recovery rate.
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It is known that

EQ[I{Vt≥K}] = N(d2(K, t)) (15)

EQ
[
I{Vt<K}min(ψ,Vt)

]
= V0D(0, t)−1e−δtN(−d1(ψ, t))+ψ

[
N(d2(ψ, t))−N(d2(K, t))

]
(16)

whereψ ∈ [0,K], N(·) represents the cumulative standard normal function and

d1(x, t) =
ln

(
V0

xD(0,t)

)
+(−δ+σ2

v/2)t

σv
√

t
; d2(x, t) = d1(x, t)−σv

√
t (17)

1.5.2 The CDG and LS Models

In the CDG model, there is no jumps in the X process and the functionµk is given by the following

µk(rt , lnXt) = κ` [lnXt −ν−φ(rt −θ)] (18)

whereκ`, ν, andφ are constants. Probabilities of default can be computed using a quasi-analytical

formula. See the appendix for details.

The LS model is a special case of CDG. The formulas in this model can be obtained by settingκ`

to zero in CDG.

1.5.3 The Double-Exponential Jump-Diffusion Model

This model is analyzed by Huang and Huang (2002). In this model, the interest rate is assumed to

be constant and the functionµk is assumed to be zero. The asset return process does have a jump

component. Specifically,N is a Poisson process with a constant intensityλ > 0, the Zi ’s are i.i.d.

random variables, andY ≡ ln(Z1) has a double-exponential distribution with a density given by

fY(y) = puηue−ηuy1{y≥0}+ pdηdeηdy1{y<0}. (19)
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In equation (19), parametersηu,ηd > 0 andpu, pd ≥ 0 are all constants, withpu + pd = 1. The mean

percentage jump sizeξ is given by

ξ = E
[
eY−1

]
=

puηu

ηu−1
+

pdηd

ηd +1
−1. (20)

To calculate probabilities of default, consider the Laplace transform ofQ(0, ·) as defined by

Q̂(s; t0) =
∫ ∞

0
e−stQ(0, t)dt (21)

An analytic solution forQ̂(s; t0) was obtained by Kou and Wang (2002, Theorem 4.1). Letxb ≡
ln(V0/V∗) andµx ≡−(πv

0 + r−δ−σ2
v/2), we have

Q̂(s; t0) =
ηu−y1,s

sηu

y2,s

y2,s−y1,s
e−xby1,s +

y2,s−ηu

sηu

y1,s

y2,s−y1,s
e−xby2,s (22)

wherey1,s andy2,s are the only two positive roots for the following equation

µxy+
1
2

σ2
vy2 +λ

(
puηu

ηu−y
+

pdηd

ηd +y
−1

)
−s= 0 (23)

GivenQ̂(s; t0)∀s> 0, we then follow Kou and Wang (2002) to calculate numericallyQ(0, ·) using the

Gaver-Stehfest algorithm for Laplace inversion. For brevity, the details of this implementation method

are omitted here but can be found in Kou and Wang (2002).

1.5.4 The High-Frequency Jump Models

Like the previous subsection, the interest rate is assumed to be constant and the functionµk is assumed

to be zero. However, the low-frequency double-exponential jump component in the asset return process

will be replaced by a high-frequency jump component. The default boundary is assumed to be the same

as in the extended Merton model. Under this assumption, each defaultable zero coupon bond is like

a European option. As a result, we can borrow existing results from the option pricing literature, in

particular, from Duffie, Pan, and Singleton (2000) and Carr and Wu (2002).
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2 Conclusion

In this paper, we consider the structural approach to the valuation of defaultable bonds. In particular, we

examine an affine class of models which allow for analytical results for the price of defaultable bonds.

These models include as special cases some existing ones such as Longstaff and Schwartz (1995),

Collin-Dufresne and Goldstein (2001), and Huang and Huang (2002). The class of models examined

here also include new models that allow for stochastic asset return volatility, a high-frequency jump

component in the asset return process or a multi-factor term structure model.
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Appendix A. Solution to the Jump-diffusion stochastic volatility models

For completeness, we provide a derivation of the equity value for the affine class of Jump-diffusion

stochastic volatility models under the framework of time-changed Lev́y processes. We borrow heavily

from Huang and Wu (2004) in the discussion that follows.

The log asset returnst = ln(Vt/V0) follows the following Ĺevy process,

st = (r−δ)t +
(

σWv
t −

1
2

σ2
vt

)
+(Jt −ξt) . (A1)

Equation (A1) decomposes the log asset returnvt into three components. The first component,(r −
δ)t, is from the instantaneous drift, which is determined by no-arbitrage. The second component,
(
σWv

t − 1
2σ2

vt
)
, comes from the diffusion, with12σ2

vt as the concavity adjustment. The last term,

(Jt −ξt), represents the contribution from the jump component, withξ as the analogous concavity

adjustment forJt . The generalized Fourier transform forvt under equation (A1) is given by

φv(u)≡ EQ
[
eiuvt

]
= exp(iu(r−δ)t− tψd− tψ j) , u∈D ∈ C, (A2)

whereEQ [·] denotes the expectation operator under the risk-neutral measureQ, D denotes a subset of

the complex domain (C) where the expectation is well-defined, and

ψd =
1
2

σ2[
iu+u2]

is the characteristic exponent of the diffusion component.

The characteristic exponent of the jump component,ψ j , depends on the exact specification of the

jump structure. Throughout the paper, we use a subscript (or superscript) “d” to denote the diffusion

component and “j” the jump component. As a key feature of Lévy processes, neitherψd norψ j depends

on the time horizont.2 We note thatφs(u) is essentially the characteristic function of the log return

2See Bertoin (1996) and Sato (1999).
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whenu is real. The extension ofu to the admissible complex domain is necessary for the application

of the fast Fourier transform algorithm.

Next, we apply the time change through the mappingt → Tt as defined in equation (??). The

generalized Fourier transform of the time-changed return process is given by

φv(u) = eiu(r−q)tEQ
[

e
iu

(
σW

Td
t
− 1

2σ2Td
t

)
+iu

(
J

T
j

t
−ξT j

t

)]

= eiu(r−q)tEM
[
e−ψ>Tt

]
≡ eiu(r−q)tLMT (ψ) , (A3)

whereψ ≡ [ψd,ψ j ]
> denotes the vector of the characteristic exponents andLMT (ψ) represents the

Laplace transform of the stochastic timeTt under a new measureM. The measureM is absolutely

continuous with respect to the risk-neutral measureQ and is defined by a complex-valued exponential

martingale,

dM
dQ t

≡ exp

[
iu

(
σWTd

t
− 1

2
σ2Td

t

)
+ iu

(
JT j

t
−ξT j

t

)
+ψdTd

t +ψ jT
j

t

]
. (A4)

Note that equation (A3) converts the issue of obtaining a generalized Fourier transform into a

simpler problem of deriving the Laplace transform of the stochastic time (Carr and Wu (2002)). The

solution to this Laplace transform depends on the specification of the instantaneous activity ratev(t)

and on the characteristic exponents, the functional form of which is determined by the specification of

the jump structureJt .

Depending on the frequency of jump arrivals, Lévy jump processes can be classified into three

categories: finite activity, infinite activity with finite variation, and infinite variation (Sato (1999)). Each

jump category exhibits distinct behavior and hence results in different option pricing performance.

Formally, the structure of a Ĺevy jump process is captured by its Lévy measure,π(dx), which

controls the arrival rate of jumps of sizex ∈ R0 (the real line excluding zero). A finite activity jump
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process generates a finite number of jumps within any finite interval. Thus, the integral of the Lévy

measure is finite: ∫

R0
π(dx) < ∞. (A5)

Given the finiteness of this integral, the Lévy measure has the interpretation and property of a proba-

bility density function after being normalized by this integral. A prototype example of a finite activity

jump process is the compound Poisson jump process of Merton (1976) (MJ), which has been widely

adopted by the finance literature. Under this process, the integral in equation (A5) defines the Poisson

intensity,λ. The MJ model assumes that conditional on one jump occurring, the jump magnitude is

normally distributed with meanα and varianceσ2
j . The Ĺevy measure of the MJ process is given by

πMJ(dx) = λ
1√

2πσ2
j

exp

(
−(x−α)2

2σ2
j

)
dx. (A6)

For all finite activity jump models, we can decompose the Lévy measure into two components, a nor-

malizing coefficient often labeled as the Poisson intensity, and a probability density function controlling

the conditional distribution of the jump size.

Unlike a finite activity jump process, an infinite activity jump process generates an infinite number

of jumps within any finite interval. The integral of the Lévy measure for such processes is no longer

finite. Examples of this class include the normal inverse Gaussian model of Barndorff-Nielsen (1998),

the generalized hyperbolic class of Eberlein, Keller, and Prause (1998), and the variance-gamma (VG)

model of Madan and Milne (1991) and Madan, Carr, and Chang (1998). In our empirical studies, we

choose the relatively parsimonious VG model as a representative of the infinite activity jump type. The

VG process is obtained by subordinating an arithmetic Brownian motion with driftα/λ and variance

σ2
j /λ by an independent gamma process with unit mean rate and variance rate1/λ. The Ĺevy measure

for the VG process is given by

πVG(dx) =
µ2±
v±

exp
(
−µ±

v± |x|
)

|x| dx,
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where

µ± =

√
α2

4λ2 +
σ2

j

2
± α

2λ
, v± = µ2

±/λ.

The parameters with plus subscripts apply to positive jumps and those with minus subscripts apply to

negative jumps. The jump structure is symmetric around zero when we drop the subscripts. Note that

as the jump size approaches zero, the arrival rate approaches infinity. Thus, an infinite activity model

incorporates infinitely many small jumps. The Lévy measure of an infinite activity jump process is

singular at zero jump size.

When the integral in (??) is no longer finite, the sample path of the process exhibitsinfinite varia-

tion. A typical example is anα-stable motion withα ∈ (1,2].3 The Lévy measure under theα-stable

motion is given by

π(dx) = c±|x|−α−1dx. (A7)

The process shows finite variation whenα < 1; but whenα > 1, the integral in (??) is no longer finite

and the process is of infinite variation. Nevertheless, for the Lévy measure to be well-defined, the

quadratic variation has to be finite: ∫

R0
(1∧x2)π(dx) < ∞, (A8)

which requires thatα≤ 2.

The three jump processes considered here (MJ, VG, and LS) all have analytical characteristic ex-

ponents, which we tabulate in Table 1. We also include the characteristic exponent for the diffusion

component for comparison. Given the Lévy measureπ for a particular jump process, we can derive the

corresponding characteristic exponents using the Lévy-Khintchine formula (Bertoin (1996)),

ψ j(u)≡−iub+
∫

R0

(
1−eiux + iux1|x|<1

)
π(dx),

whereb denotes a drift adjustment term.

3See Samorodnitsky and Taqqu (1994) and Janicki and Weron (1994).
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In this subsection, we consider models where the asset return volatility is stochastic. More specif-

ically, we assume that the asset return process follows a time-changed Lévy process and then apply a

stochastic time change to the Brownian component of the asset return to generate stochastic (diffusive)

volatility. Notice that the arrival rate of jumps remains constant. The stochastic time change we use is

the Heston (1993) model.

We need to derive the Laplace transform of the stochastic timeTt =
∫ t

0 v(s)dsunder the measureM.

Thus, we rewrite the Laplace transform as

LMT (ψ) = EM
[
e−ψ>Tt

]
= EM

[
e−

∫ t
0 ψ>v(s)ds

]
. (A9)

By Girsanov’s Theorem, under measureM, the diffusion function ofv(t) remains unchanged and

the drift function is adjusted to

µM = κ(1−v(t))+ iuσσvρv(t) (A10)

Substituting the Laplace transform in equation (??) into the generalized Fourier transforms in Table

2, we can derive analytical results for 3 jump-diffusion with stochastic volatility models.

Appendix B. Default Probabilities in the CDG and LS Models

Default probabilitiesQ(0, ·) can be calculated using an approach in the spirit of LS. Namely,

Q(0,U) =
n

∑
i=1

q(ti ; t0), ti = iU/n, U ∈ (0,T], (B11)
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where fori = 1,2, . . . ,n,

q(ti ; t0) =
N(a(ti ; t0))−∑i−1

j=1q(t j− 1
2
; t0)N(b(ti ; t j− 1

2
))

N(b(ti ; ti− 1
2
))

(B12)

a(ti ; t0) = −M(ti ,T|X0, r0)√
S(ti |X0, r0)

(B13)

b(ti ; t j) = −M(ti ,T|Xt j )√
S(ti |Xt j )

(B14)

and whereX = V/V∗, the sum on the RHS of (B12) is defined to be zero wheni = 1, and

M(t,T|X0, r0) ≡ E0 [lnXt ] ; (B15)

S(t|X0, r0) ≡ Var0 [lnXt ] ; (B16)

M(t,T|Xu) = M(t,T|X0, r0)−M(u,T|X0, r0)
Cov0[lnXt , lnXu]

S(u|X0, r0)
, u∈ (t0, t) (B17)

S(t|Xu) = S(t|X0, r0)− Cov0[lnXt , lnXu]2

S(u|X0, r0)
, u∈ (t0, t) (B18)

Notice that we follow CDG to discretize att j− 1
2
, j = 1, . . . , i − 1, on the RHS of (B12). One can

see that the implementation of this approach to computingQ(0, ·) amounts to calculating the mean

M(t,T|X0, r0) and the covarianceCov0[lnXt , lnXu],∀u≤ t ≤ T.

It follows that

eκ`tE0[lnXt ] = lnX0 +
[
(πv + ν̄κ`)+(1+κ`φ)

ᾱ
β

]
eκ`t −1

κ`

+(1+κ`φ)
(

r0− ᾱ
β

)
e(κ`−β)t −1

κ`−β
(B19)
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and

Cov0[lnXt , lnXu]eκ`(t+u) = (B20)

σ2
v E0

[∫ t

0
eκ`v dZv

∫ u

0
eκ`v dZv

]
(≡ I1)

+σv(1+φκ`) E0

[∫ t

0
eκ`v dZv

∫ u

0
eκ`v rvdv

]
(≡ I2)

+σv(1+φκ`) E0

[∫ u

0
eκ`v dZv

∫ t

0
eκ`v rvdv

]
(≡ I3)

+(1+φκ`)2 Cov0

[∫ t

0
eκ`v rvdv,

∫ u

0
eκ`v rvdv

]
(≡ I4)

where

I1 =
σ2

v

2κ`

(
e2κ`u−1

)

I2 = (1+φκ`)
ρrV σvσr

κ` +β

[
e2κ`u−1

2κ`
− e(κ`−β)u−1

κ`−β

]

I3 = (1+φκ`)
ρrV σvσr

κ` +β

[
1−e(κ`−β)t

κ`−β
+

e2κ`u−1
2κ`

+e(κ`+β)u e(κ`−β)t −e(κ`−β)u

κ`−β

]

I4 = (1+φκ`)2 σ2
r

2β

[
−

(
e(κ`−β)t −1

)(
e(κ`−β)u−1

)

(κ`−β)2 +
(

e(κ`+β)u−1
) e(κ`−β)t −e(κ`−β)u

κ2
` −β2

− β
κ2

` −β2

e2κ`u−1
κ`

+
1

κ2
` −β2

(
1−2e(κ`−β)u +e2κ`u

)]
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Sato, Ken-Iti, 1999,Lévy Processes and Infinitely Divisible Distributions. (Cambridge University Press

Cambridge).

Schaefer, Stephen, and IIya A. Strebulaev, 2004, Structural models of credit risk are useful: Evidence

from hedge ratios on corporate bonds, working paper, LBS and Stanford.

20



Table 1: Characteristic Exponent of the Lévy Components in the Asset Return Process

Component ψd(u) or ψ j(u)

Diffusion 1
2σ2

[
iu− (iu)2

)

Poisson Jump (MJ) λ
[
iu

(
eα+ 1

2σ2
j −1

)
−

(
eiuα− 1

2u2σ2
j −1

)]

Variance Gamma (VG) λ
[
−iu ln

(
1−α− 1

2σ2
j

)
+ ln

(
1− iuα+ 1

2σ2
j u

2
)]

Log Stable (LS) λ
(
iu− (iu)α)

Table 2: Generalized Fourier Transforms of Log Asset Returns
xt denotes the time changed component andyt denotes the unchanged component in the log returnst =
ln(Vt/V0). Jt denotes a compensated pure jump martingale component, andξ its concavity adjustment.

Model xt yt φs(u)

SV1 σWt − 1
2σ2t Jt −ξt eiu(r−q)t−tψ j LMT (ψd)
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